30 research outputs found

    A Bioinspired Fluid-Filled Soft Linear Actuator

    Get PDF
    In bioinspired soft robotics, very few studies have focused on fluidic transmissions and there is an urgent need for translating fluidic concepts into realizable fluidic components to be applied in different fields. Nature has often offered an inspiring reference to design new efficient devices. Inspired by the working principle of a marine worm, the sipunculid species Phascolosoma stephensoni (Sipunculidae, Annelida), a soft linear fluidic actuator is here presented. The natural hydrostatic skeleton combined with muscle activity enables these organisms to protrude a part of their body to explore the surrounding. Looking at the hydrostatic skeleton and protrusion mechanism of sipunculids, our solution is based on a twofold fluidic component, exploiting the advantages of both pneumatic and hydraulic actuations and providing a novel fluidic transmission mechanism. The inflation of a soft pneumatic chamber is associated with the stretch of an inner hydraulic chamber due to the incompressibility of the liquid. Actuator stretch and forces have been characterized to determine system performance. In addition, an analytical model has been derived to relate the stretch ability to the inlet pressure. Three different sizes of prototypes were tested to evaluate the suitability of the proposed design for miniaturization. The proposed actuator features a strain equal to 40–50% of its initial length—depending on size—and output forces up to 18 N in the largest prototypes. The proposed bioinspired actuator expands the design of fluidic actuators and can pave the way for new approaches in soft robotics with potential application in the medical field

    Quantitative analysis of interface pressures in transfemoral prosthetic sockets

    Get PDF
    Background: Among the different factors affecting socket comfort, the pressure applied on residual limb tissues is a crucial parameter for the success or failure of any prosthetic device. However, only a few incomplete data are available on people with transfemoral amputation, in this regard. This work aims at filling this gap in the literature. Methods: Ten people with transfemoral amputation wearing 3 different socket designs were recruited in this study: 2 ischial containment sockets featured by proximal trim lines that contain the ischial tuberosity and ramus and greater trochanter, 2 subischial sockets with proximal trim lines under the ischium level, and 6 quadrilateral sockets with proximal trim lines that contain the greater trochanter and create a horizontal seat for the ischial tuberosity. The pressure values at the anterior, lateral, posterior, and medial areas of the socket interface were recorded during 5 locomotion tasks (ie, horizontal, ascent, and descent walking, upstairs and downstairs) by using an F-Socket System (Tekscan Inc., Boston, MA). Gait segmentation was performed by exploiting plantar pressure, which was acquired by an additional sensor under the foot. Mean and standard deviation of minimum and maximum values were calculated for each interface area, locomotion task, and socket design. The mean pressure patterns during different locomotion tasks were reported, as well. Results: Considering all subjects irrespective of socket design, the mean pressure range resulted 45.3 (posterior)-106.7 (posterior) kPa in horizontal walking; 48.3 (posterior)-113.8 (posterior) kPa in ascent walking; 50.8 (posterior)-105.7 (posterior) kPa in descent walking; 47.9 (posterior)-102.9 (lateral) kPa during upstairs; and 41.8 (posterior)-84.5 (anterior) kPa during downstairs. Qualitative differences in socket designs have been found. Conclusions: These data allow for a comprehensive analysis of pressures acting at the tissue-socket interface in people with transfemoral amputation, thus offering essential information for the design of novel solutions or to improve existing ones, in this field

    Anterior Cruciate Ligament Rehabilitation for the 10- to 18-Year-Old Adolescent Athlete:Practice Guidelines Based on International Delphi Consensus

    Get PDF
    Background:There are 2 treatment options for adolescent athletes with anterior cruciate ligament (ACL) injuries—rehabilitation alone (nonsurgical treatment) or ACL reconstruction plus rehabilitation. However, there is no clear consensus on how to include strength and neuromuscular training during each phase of rehabilitation.Purpose:To develop a practical consensus for adolescent ACL rehabilitation to help provide care to this age group using an international Delphi panel.Study Design:Consensus statement.Methods:A 3-round online international Delphi consensus study was conducted. A mix of open and closed literature-based statements were formulated and sent out to an international panel of 20 ACL rehabilitation experts. Statements were divided into 3 domains as follows: (1) nonsurgical rehabilitation; (2) prehabilitation; and (3) postoperative rehabilitation. Consensus was defined as 70% agreement between panel members.Results:Panel members agreed that rehabilitation should consist of 3 criterion-based phases, with continued injury prevention serving as a fourth phase. They also reached a consensus on rehabilitation being different for 10- to 16-year-olds compared with 17- and 18-year-olds, with a need to distinguish between prepubertal (Tanner stage 1) and mid- to postpubertal (Tanner stages 2-5) athletes. The panel members reached a consensus on the following topics: educational topics during rehabilitation; psychological interventions during rehabilitation; additional consultation of the orthopaedic surgeon; duration of postoperative rehabilitation; exercises during phase 1 of nonsurgical and postoperative rehabilitation; criteria for progression from phase 1 to phase 2; resistance training during phase 2; jumping exercises during phase 2; criteria for progression from phase 2 to phase 3; and criteria for return to sports (RTS). The most notable differences in recommendations for prepubertal compared with mid- to postpubertal athletes were described for resistance training and RTS criteria.Conclusion:Together with available evidence, this international Delphi statement provides a framework based on expert consensus and describes a practice guideline for adolescent ACL rehabilitation, which can be used in day-to-day practice. This is an important step toward reducing practice inconsistencies, improving the quality of rehabilitation after adolescent ACL injuries, and closing the evidence-practice gap while waiting for further studies to provide clarity

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Progettazione e realizzazione di un dispositivo robotizzato con attuazione fluidica soft-rigida per chirurgia minimamente invasiva

    No full text
    La presente tesi si prefigge lo scopo di sviluppare un nuovo principio di attuazione fluidico soft-rigido, al fine di integrarlo in un dispositivo robotizzato per applicazioni MIS (Minimally Invasive Surgery). L'obiettivo è quello di fornire una valida alternativa alla strumentazione tradizionale per TEM (Transanal Endoscopic Microsurgery). Il dispositivo è caratterizzato da due bracci robotici ancorabili, tramite un supporto rigido, ad un endoscopio flessibile commerciale. La tipologia di attuazione proposta si basa sull’utilizzo di un attuatore elastico in silicone, interamente contenuto all’interno di una struttura meccanica rigida, che permette di convogliare la deformazione del materiale nella direzione desiderata. This thesis aims to develop a new concept of actuator based on a hybrid soft-rigid fluidic actuation system in order to integrate it into a robotic device for MIS (Minimally Invasive Surgery) applications. The goal is to provide an efficient alternative to traditional instruments for TEM (Transanal Endoscopic Microsurgery). The device is characterized by two robotic arms anchored by a rigid support to a commercial flexible endoscope. The main concept of the actuation system is to exploit the deformation of the soft material due to the air inlet pressure to produce a mechanical effect on a rigid structure in which the actuator is embedded

    Variable stiffness and shape prosthetic socket based on layer jamming technology

    No full text
    To obtain functional and comfortable lower limb prostheses, major attention must focus on the physical interface constituted by the prosthetic socket. Indeed, the rigid socket is in contact with residual limb tissues, that are much softer yet variable depending on daily activities. For adapting the stiffness and shape of the prosthetic interface to the physiological changes of the residual limb, the layer jamming principle appears a really promising solution. Therefore, a new smart transfemoral socket with integrated soft actuators is presented. Each actuator is constituted by one inflatable chamber and two layer jamming ones, optimized in terms of achievable stiffness to be integrated into the socket. A control unit was designed to allow for shape and stiffness changes of the actuator. The weight of the control unit resulted equal to 450 g with dimensions equal to 43×140×80 mm3 . The final thickness of the actuator was 10.5 mm. Thus, the proposed design enables the wearability of the system. Preliminary tests were carried out evidencing a 15-times increment of the layer jamming chamber stiffness from the soft state at atmospheric pressure to the stiff state at 31 kPa absolute pressure. In addition, a maximum displacement of the integrated multi-chamber actuator equal to 21.30 ±0.85 mm and the functionality of the system have been demonstrated
    corecore